Geometric Invariant Theory of Syzygies, with Applications to Moduli Spaces

نویسنده

  • MAKSYM FEDORCHUK
چکیده

We define syzygy points of projective schemes, and introduce a program of studying their GIT stability. Then we describe two cases where we have managed to make some progress in this program, that of polarized K3 surfaces of odd genus, and of genus six canonical curves. Applications of our results include effectivity statements for divisor classes on the moduli space of odd genus K3 surfaces, and a new construction in the Hassett-Keel program for the moduli space of genus six curves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomaly Matching and Syzygies in N =1 Gauge Theories

We investigate the connection between the moduli space of N = 1 supersymmetric gauge theories and the set of polynomial gauge invariants constrained by classical/quantum relations called syzygies. We examine the existence of a superpotential reproducing these syzygies and the link with the 't Hooft anomaly matching between the fundamental fields at high energy and the gauge invariant degrees of...

متن کامل

Good Moduli Spaces for Artin Stacks

We develop the theory of associating moduli spaces with nice geometric properties to arbitrary Artin stacks generalizing Mumford’s geometric invariant theory and tame stacks.

متن کامل

On Atkin-Lehner correspondences on Siegel spaces

‎We introduce a higher dimensional Atkin-Lehner theory for‎ ‎Siegel-Parahoric congruence subgroups of $GSp(2g)$‎. ‎Old‎ ‎Siegel forms are induced by geometric correspondences on Siegel‎ ‎moduli spaces which commute with almost all local Hecke algebras‎. ‎We also introduce an algorithm to get equations for moduli spaces of‎ ‎Siegel-Parahoric level structures‎, ‎once we have equations for prime l...

متن کامل

A Geometric Invariant Theory Construction of Moduli Spaces of Stable Maps

We construct the moduli spaces of stable maps, Mg,n(P , d), via geometric invariant theory. This construction is only valid over Spec C, but a special case is a GIT presentation of the moduli space of stable curves of genus g with n marked points, Mg,n; this is valid over any base field. Our method follows that used in the case n = 0 by Gieseker in [6], to construct Mg, though our proof that th...

متن کامل

Relations among Fixed Points

Let M be a smooth manifold with a circle action, and {P } be the fixed point sets. The problem I want to discuss in this paper is how to get the topological information of one relatively complicated fixed point set, say P 0 , from the other much simpler fixed points. Such problems are interesting in symplectic geometry and geometric invariant theory, especially in the study of moduli spaces. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017